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THE TWO-DIMENSIONAL TRANSMISSION AND 
REFLECTION OF A SOLITARY WAVE 

Q. Q. LU 
Service TV, INRS, Avenue ak Bourgogne, F-54501 Vandoeuvre, France 

SUMMARY 
In the present paper, limited to the discussion of weak non-linear shallow water waves, the transmission and 
reflection of a planar soliton on a two-dimensional structure are considered. The whole flow field is divided 
mainly into two subfields. One is in the vicinity of the structure, called the inner field; the other is far from the 
structure, called the outer field. In the outer field, according to its definition, the influence of the structure on 
the flow is negligible; to the order O(a, B) the governing equation for the flow is replaced by the Boussinesq 
equation. In the inner field the effect of the structure on the flow is significant, so the full Laplace equation is 
adopted as the governing equation for the flow field. Then the matched asymptotic expansion method is 
employed to connect smoothly the inner and outer solutions. Owing to the irregularity of the bottom of the 
structure, the boundary element method is incorporated. As an example, the case in which the incoming 
wave is a solitary wave is calculated and the time histories of transmitted and reflected waves are plotted. 

KEY WORDS Matched asymptotic expansion Solitary wave Shallow water waves 

1. INTRODUCTION 

The problem of the diffraction of incident waves by a finite obstacle is of general interest in wave 
theory. During the past few years, in order to deal with the behaviour of water waves around 
a structure, linear diffraction theory, the Stokes expansion procedure and direct simulation of the 
Laplace equation with the full non-linear free surface condition have been developed. It is obvious 
that the first and second methods are not applicable to the weak non-linear shallow water wave 
problem to be considered here. With the last kind of method, Isaacson,' using a boundary 
element technique, calculated the interaction between a solitary wave and the structure. However, 
some problems arise in the direct simulation method (DSM). It is known that the Laplace 
equation with a full free surface condition admits the solitary wave solution only under some 
approximations. Owing to the existence of the higher terms in the DSM, the solitary wave suffers 
significant distortion in its propagation, so the calculated results are the interaction of the solitary 
wave and the structure with higher-order effects. 

The present paper develops further the method the author and his co-workers have established 
based on the earlier work of Sugimoto and Kakutani.' In our method, in the vicinity of the 
structure the Laplace equation is used as the governing equation; in the region far from the 
structure the effect of the structure on the flow field can be neglected, so that to the order O(a, p) 
the Boussinesq equations, which admit a solitary wave solution, are adopted as the governing 
equations. In the overlapping region of the inner and outer fields the matched asymptotic method 
is used to connect smoothly the solutions of the two fields. By the same procedure the author and 
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his co-workers solved successfully the reflection and transmission of a planar soliton around 
a rectangular structure3 and the reflection of a solitary wave on a coastline with a slot.4 

2. FORMULATION OF THE METHOD 

Consider the two-dimensional motion of an inviscid and incompressible fluid bounded by a free 
surface, a sea bed and the immersed surface of the structure. As shown in Figure 1, a two- 
dimensional co-ordinate system is employed with its y-axis pointing upwards and its origin ‘0’ 
located on the ocean bed. In the present paper the ocean bed is assumed to be flat and the x-axis 
lies on the sea bed pointing to the right. The two-dimensional structure under consideration has 
two vertical walls and its bottom is arbitrarily shaped. The geometrical parameters denoted in 
Figure 1 are non-dimensionalized by using the undisturbed depth and the wavelength as the 
vertical and horizontal characteristic lengths respectively. Furthermore, the present paper is 
limited to the discussion of weak non-linear shallow water waves. 

2.1. Discussion of the governing equations for diflerent regions 

By considering the relative importance of the effect of the structure on the flow field, the whole 
flow field can be divided into five main subfields, XI, &, &, X c 4  and X5, which are separated by 
the four dashed lines shown in Figure 1. The outer field, which is far from the structure, consists of 
Z1 and &, where the effect of the structure on the flow field is negligible, i.e. the existence of the 
structure does not change the properties of weak non-linear shallow-water waves there. Therefore 
the non-dimensional Laplace equation, characterized by the relative amplitude a and the relative 
shallowness B, is adopted as the governing equation of flow motion,’ 

P ~ x x + 4 Y u = o  (o<Y<1+a?), (1) 
together with the boundary conditions 

4,=0 (y=O), 

4 y -  B1, - a B 4 x 1 x  = 0 

4: + -4; = 0 
28 

(Y = 1 +a?), 

(y = 1 + a?), 
a 

where 4 is the velocity potential and 1 is the elevation of the free surface. Here a and /? are two 

Figure 1. Schematic configuration of the flow field 
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dimensionless parameters defined respectively by 

where a and 1 are the typical wave amplitude and length respectively and h is the undisturbed 
water depth. In the weak non-linear shallow water wave problem a x P 6  1. 

Z2, C3 and C4 compose the inner field, where the action of the structure on the waves is 
significant and, owing to the no-flow condition imposed by the boundary of the structure, the 
horizontal characteristic length of the flow is also the undisturbed depth h. As a result, in the three 
subfields equations (1H4), non-dimensionalized by taking the wave length I as the horizontal 
characteristic length, are no longer applicable. Therefore it is obviously necessary that different 
horizontal scales be used for the inner and outer fields. Let us introduce the co-ordinate 
transformation 

Here C is called the inner variable. Let CL and CR represent respectively xL/f1112 and xR/p1'2. 
Substituting the inner variable into the Laplace equation (1) and the corresponding boundary 
conditions, we obtain the dimensionless governing equations for the three inner subfields: 

where the function y = b ( r )  represents the bottom of the structure and the prime denotes its 
derivative with respect to 5. 

2.2. Solution of the outerJield 

From equations (1H4) we can obtain the formal solution for the outer field XI +&: 

In the weak shallow water wave problem equations (1H4) can be replaced equivalently to the 
order O(a, P) by the depth-averaged Boussinesq equations 

?r + C(1+ a?)ulx = 0, 

Ur + auux + qx  - --Uxxr = 0, 

(13) 

(14) B 
3 



1058 

where 

Q. Q. LU 

and u, q and f satisfy 

The detailed derivation of equations (12H18) can be found in Reference 5. In this paper we 
restrict ourselves to the approximation of O(a, 8) for the problem shown in Figure 1, so that 
equations (13) and (14) will be used as the governing equations for the outer field El +&. 

2.3. Solutions of the innerJields Xz and X4 
As explained in Section 2.1, the solution (12) is not applicable for the inner field, i.e. the solution 

(12) is not uniformly valid in C1 and X 2  as well as in C4 and X5. Now we discuss the derivation of 
the inner solution for the region &. Introducing a new variable x1 defined by xl+xL=x, 
substituting x1 into solution (12) with x and xL being replaced by B’/2[  and B1l2cL respectively 
and then expandingf(c, t )  in terms of j?, we write the first three terms of the resulting expression 
and denote it by 4;: 

$00 =f - + P f ;  (c - CL) +if CX C(5 - id2 - Y 2 1  + 0(P2) .  (19) 

For relation (18) we follow the same procedure and denote the resulting expression by q;: 

Similarly, for region C4 we have 

(21) 
B 4: =f’ + B1” fx ’  (c- [R) + 5 fx’x [(c-[R)-y21 + o(83/2 1, 

1/2 + B 
q: = -f t+ - p f x f  (r - CR) -; ( f x ’  )’ + fx’xr -fx’xf (c - CR)’ 1 + O(aB’”, 83/2)* (22) 

In later discussion the values associated with f with superscript + or - indicate that they are 
evaluated at xR or xL respectively, and for convenience the variables with subscript 2, 3 or 
4 represent the corresponding variables in the region X 2 ,  C3 or X4. In fact, according to the 
matching principle, equations (19H22) are the asymptotic expressions of &, q2 and 44, q4 as 
5+-m and co respectively. On the basis of the asymptotic expressions of 42 and d4, we 
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construct 42 and 44 as follows: 

4 2  = 4: +P2 * - (CYYY 0, 
44 = 4: + P2 *+ (C, Y J ) ,  

1059 

where I,- and $+ are modifying terms for 4; and 4: due to the effect of the structure. 
Substituting equations (23) and (24) into equations @)-(lo), we obtain the following governing 

The approximation of the Boussinesq equations to equations (1)-(4) is of the order O(a,B). 
Therefore we only seek the solutions for and I)' to the order O(~l /z) ,  so that equation (27) 
means that I)- (C, 1, t) and J /+( [ ,  1,t) are zero. Thus the solutions of equations (25)-(27) together 
with the matching condition (29) take the form 

2.4. The governing equations for C3 
The subfield C3, which is under the structure, differs from the other two inner fields C2 and C4 

in the fact that there is no longer a free surface condition but a boundary condition imposed by 
the rigid structure. Taking into account the better adjustment of the boundary integral equation 
to the geometrical shape of the boundary, we use the boundary integral equation method for the 
solution of &. For the present problem the velocity potential 43 can be expressed by Green's 
third identity: 

43(P)= 43n(Q)G(P, Q)dz- 43(Q)Gn(P, QIdz (PE'C~), (34) i i 
where Q is the source point, P is the field point and G(P,  Q) is the two-dimensional fundamental 
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solution of the Laplace equation. Here the subscript II denotes the outward unit vector of the 
boundary T of the region X3. To determine the distributions of the velocity potential 43 and its 
normal derivative in the subfield &, let the point P approach the boundary T from the interior of 
the subfield Z3; we have 

3 4 3 ( P ) =  43.(Q)W,Q)dt- 43(Q)G,(P,QW ( P = ) ,  (35) i 
which is a Fredholm integral equation of the second kind.6 The solution to the full problem must 
satisfy certain continuity conditions over the vertical planes seperating the fluid regions, namely 

4 2 = 4 3 ,  4 3 5 = 4 3 <  (l=CL,o<y<k), (36) 

43 = 447 $35 = 44c (C = CR, 0 < Y < 1~ 1, (37) 

which assure the continuity of pressure and velocity on these vertical planes. 

2.5. Relations of the solutions in diflerent regions 

For Z1, Zz, Z3, Z4 and Z5 we have so far constructed the solutions valid only within the 
respective regions. Now we begin to look for the relations of these solutions. Applying the mass 
conservation equation to the subfield X3 taking into account equations (36) and (37), we obtain 

jr 4451c=5.dY = j: 4zclc=cLdJ’. 

Substituting expressions (23) and (24) for 44 and d2 as well as equations (32) and (33) into the 
equation above, we obtain 

fx’ =fL * (38) 
Using the Fourier formula for equation (32) with consideration of equations (30) and (36), we have 

$; lc=cRcos(nny)dy 

Hence 

Similarly, 
1 f l L  

By using equations (39) and (40) and substituting the expressions for 42 and 44 into equations (36) 
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and (37), we obtain 

The two last equations give the relations of the velocity potential c # ~ ~  and its normal derivative on 
the boundaries [ = cR and [ = cL of C3. 

In the outer field the flow is described by q and u, so we must establish the relations between the 
equations obtained and q and u. By differentiating equations (35), (41) and (42) with respect to 
time t and then substituting the relations (15) and (16) into the resulting equations to eliminate the 
function f and its derivatives, we obtain 

From equation (38) we can get 

u+ =u- .  

By differentiating equations (39) and (40) with respect to time t, we have 

So far the system of governing equations for the present problem is not closed, a fact that can be 
found in the case of Reference 2, where the structure under consideration was a special case of the 
present problem. Therefore we need to find an additional equation to close the system. Let us 
apply the two-dimensional Green formula to the field X 3  for the velocity potential 43:  

Vd3d7= n ~ $ ~ d z ,  SSL i 
where V denotes the two-dimensional gradient operator. The last equation can be rewritten as 

Taking the scalar product of the above equation with the unit vector i of the x-axis, we have 
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Conservation of mass leads to 

Q. Q. LU 

which implies that the integral in parentheses in equation (49) is independent of the variable c. By 
substituting the above equation and the expression for q54 into equation (49) and then differenti- 
ating the resulting equation with respect to time t ,  we obtain the desired additional equation 

When the bottom of the structure is flat, equation (50) reduces to equations (28c) and (28d) in 
Reference 2. Now equations (43H46), (50) and the Boussinesq equations (13) and (14) constitute 
the set of governing equations for the present problem. 

3. DISCRETIZATION OF EQUATIONS 

Although the present problem has been simplified greatly, it is still quite difficult to obtain the 
analytical solution, so that additional approximation must be introduced. The discretized forms 
of the present equations are 
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k 1  p (q - ),+ - 2(q - y  + (q - )”- 
At2 

- 2 1 ---I sin(ndR) - - 
.=1(nn)2 2 

where superscripts s + 1, s and s - 1 represent the corresponding time steps. The infinite series in 
equations (44), (45) and (50) are truncated at the kth term. Equation (51) is the discretized form of 
equation (43) by using, n, line segments, i.e. boundary elements, to approximate the four 
boundaries of Z3 and letting 43r and (43t)n be constant over each boundary element. The values 
for 43r and ( 4 4  over the jth boundary element are denoted respectively by (43f ) j  and 
((43t).)j H i j  and Gij are known coefficients and their expressions and computation programmes 
can be found in Reference 7. n,, made up of nR, n,, nL and nb over the four boundaries C = C R ,  
y = b([) ,  C = CL and y = 0 shown in Figure 2, is the total number of boundary elements used. In the 
present paper the discretization for the four boundaries is respectively uniform. 

11, I n  and I, in equations (53H55) are the numerical treatments for the integrals 

J1:” b’ (C) 4 3 1  dr, jI (43t)c  15 = cR cos(nnY) dY, ib” (43r)c I c=CL cos(mny) dY 

and take respectively the following forms: 
nR + n. nR + n. 

11 = 1 ( 4 3 t 1 j [ ( ; + ~  b’(~)d i=  1 (43t)j(Yj+1-Yj), 
j = n R +  1 j = n R +  1 

where y j = b ( l j )  and yj+l  =b( i j+l ) ,  and 

where yj, C j ,  yj+ and c j+  are the co-ordinates of the extreme points of the jth boundary element. 
Over C= CR and i= CL, (43f)j and ( (43t)e) j  are all unknown, so that we have to reduce the number 
of unknowns in equation (51) in order for it to be solvable. We substitute the discretized forms of 
equations (53) and (54) into equation (51) to eliminate at the boundaries [= CR and {=iz. For 

Figure 2. Sketch of the boundaries of & and the computational domain of X5 discretized into line segments for 
equation (51) and the Boussinesq equations 
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this, y in equations (53) and (54) is replaced by the co-ordinates of the middle points correspond- 
ing to the boundary elements. Thus the resulting equation can be expressed in a compact form in 
terms of unknowns Qj, which contain n, unknown values of (43r)j and ((c$~&)~: 

Here Bi are functions of variables q+, u+, q- and u- ,  and Gt  are known. 

only describe the treatment of &, the method for Zl being similar: 
For the Boussinesq equations the following predictor-corrector method is adopted. Here we 

(24;:: - 2ut+ + u;-f: - u;- 1 + 2u; - u;- 1 )  = 0, P -~ 
3AtAx2 

At the boundary x = xR, where i = 0, equations (57) and (59) are replaced respectively by 

&+’ - 1 “ + - { [1+0*5a(q: + q:)](ut + u;”) - [1+0*5a(qg + qb)] (4 + ub’l)} =0, (61) At 2Ax 

where P = 1 + aq and qo = q +. In equation (57), for i = 0, uo = u+. The computational domain is 
truncated at x M  = M Ax, as shown in Figure 2, where M is the number of meshes of computation 
and linear distributions of q and u are assumed at x M ,  i.e. 

(62) s + l -  s + 1  s + l  M = 2u”M+1 -uG?z, qhf - h M - 1  - 4 l M - 2 9  

The scheme (57H62) was tested for relatively extensive initial boundary value problems of the 
Boussinesq equations. The results show that it has a good performance in predicting the 
behaviours of the solitary Of course, a suitable transparent boundary operator is better 
for the treatment of the outer boundary x M ,  but this is beyond the scope of the present study. 

It must be pointed out that the inner and outer solutions are valid only in their respective 
subfields. Therefore it is necessary to construct complex solutions which are uniformly valid for 
the inner and outer fields. The complex solutions for the free surface elevation are constructed for 
.Cl + C2 and Z4 + Z5 respectively as follows: 

a 
VL = (1B)L - Pli2 ICI; - p-f; k- + Wi-  )21 
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U 
~ ~ R = ( Y I ~ R - B ~ ' ~ $ ~ +  - ~ C 2 f ~  $: +($;)'I 

k 

[sin(nnyj+ 1) -sin(nnyj)], (64) 2 nR (- 1)" e-nn(x-xl)/p'I' = ( t l B k + ~  C aj C - 
71 j = l  n = l  nz 

where (qBh and (qB)R are the displacements of the free surface calculated numerically by equations 
(57)-(62) for X1 and X5 respectively. It can be easily verified that solutions (63) and (64) tend to 
equations (28a) and (28b) as well as to the solution of the Boussinesq equations as x+xL, xR, - 00 

and 00 respectively. 
In the present computation the coefficients a, and b,, which are necessitated by equations (63) 

and (64) through $; and $;, are obtained by integrating numerically equations (47) and (48) 
with respect to time t: 

a m  = Jr (am)rdt= ( 'il (arn(qAt))r + 0 * 5 ~ ( a m ( o ) ) t  + (arn(s~t))t l  (65) 
4=1 

We outline briefly the computational procedure. 

1. Give the initial distributions of u and q for the two outer fields Z1 and Z5. 
2. As initial guess value for (u+)S+' let (u+)S+'=(u+)S. Therefore equation (52) leads to 

(u-y'l =(u+)"". When s=O, to initiate the computation, let (q+)S-l and (q-)S-l be equal 
to (q')" and ( q - y  respectively. 

3. Solve respectively the initial boundary value problems of the Boussinesq equations for the 
two outer fields XI and X5 by using the scheme (57)-(62) with the values of (u+)S+' and 
(u-)"" defined in step 1 to obtain (q+)S+' and (q-)"". 

4. Substitute (u+)S+l, (u-)S+l, (q+)S+l and (q-)"" into the linear equation system (56) so that 
(43r)j (on the bottom of the structure and the ocean bed), ((43r)c)j15=c, and ((43r)S)j15=cL can 
be calculated. By the substitution of these values into equation (55), a new value, which is 
denoted by (u+)* ,  for (u+)S+I is obtained. 

5. Correct (u+)S+l by (u+)5+l =(l-w)(u+)"+'+w(u+)*, where w is the relaxation factor. 
Then, using the updated (u+)S+l ,  repeat the loop of execution of steps 1 4  until the 
difference between (u+)S+l and (u+)* is less than a given error value. 

6. Obtain the complex solutions of the elevation of the free surface through equations (63) and 
(64) with the values calculated from steps 1-5. The computation at the (s+ 1)th time level is 
completed. 

4. EXAMPLES AND DISCUSSION 

The method presented in the above sections is established for a general case and can be used to 
deal with relatively extensive shallow water problems. In the present paper, only the situation 
where a solitary wave is incident upon the structure from the right-hand side of the field is 
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considered. The initial conditions for q and u are" 

i.e. the initial position of the incident solitary wave is localized at xo + xR. Throughout the present 
computation, except where noted, the parameters take the following values: a =0-2, /3 = 0.1, 
xo = 5.0, k = 20, At = 0.03, Ax = 0.08, M = 200, nL = nR = 30, n, = 60, nb = 30, o = 0.8. 

In the present study, several cases where the structures are symmetrical as shown in Figures 
3 and 4 are calculated. 

In analogy with other problems that involve time stepping, some conditions must be satisfied 
by At and Ax in order to maintain the stability of the solution. Computations using different 
values of At and Ax show that the whole system of the algorithm remains stable for the values of 
At and Ax satisfying the stability condition of the finite difference scheme (57)-(62), i.e. the whole 
method has the same stability condition as that of the scheme (57H62). Ifi addition, the iteration 
process in steps 1-5 is convergent for o between zero and unity, which only affects the speed of 
convergence. With the optimal value of o, 08,  three iterations are used in this paper to obtain 
a value for (u')s+' with a relative error I(u'y+'-(u')*I/(u')* of 

To examine the influences of the structure dimensions and shape on the flow, let us define 
several characteristic parameters: q:=, the maximum surface wave elevation at ( = cR; t&, the 

Figure 3. Case 1: the bottom of the structure is part of a circle 

Figure 4. Case 2 hl =0.7, h,=0.3, x R = 0 5  Case 3: hl =0.7, hz=0.7, xR=@5. Case 4 hl =0*7, h2=03 ,  xR=2 
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time when q&x occurs; q&, the maximum surface wave elevation at c=CL; t iax ,  the time when 
occurs; HT, the amplitude of the transmitted solitary wave. The fluid masses in the fields 

XI + Z2 and Z4 + Zs as well as the total fluid mass in the whole field are defined respectively as 

M 
mL (sAt) = Ax 

mR(sAt) = Ax 1 qR(iAx +xu, sAt), 

qL ( - iAx - xL , sAt), 
i = o  

M 

i = o  

m(sAt) = m,(sAt) + mL(sAt), 

where qL and qR are given by equations (63) and (64). The maximum relative error of the fluid 
mass is defined by 

maxlm(sAt) - mo I Yo, O G S G N .  E,  = 
m0 

Here mo is the the initial mass of the flow field and N is the prescribed total number of time steps; 
in this paper N = 300. 

The time histories of the wave elevations in the fields Z4+ Zs and XI +& for case 1 are plotted 
respectively in Figures 5 and 6. In fact they are also the typical trends of the wave behaviour 
around the structure for all the situations considered. It is observed that like the incident wave, 
the transmitted wave is also a solitary wave (see Figure 6), while the reflected wave is a permanent 
form wave with the trough (see Figure 5). 

Some computed characteristic quantities for cases 1 4  and the variation of mL, mR and m with 
time in case 1 are listed respectively in Tables I and 11. 

0,oo 2,oo 4,OO 6 , O O  

x-xR 

Figure 5. Time history of the wave elevation in Z4+Z, 
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k l . 8  

1-1.2 

10 

8 

6 

A 

I 1-3.0 I 

t 1-0.6 I 
t = O  , 

0 '  I 
0,oo 2,oo 4,OO 6,OO 

-(x-x,) 

Figure 6. Time history of the wave elevation in Z, +Z, 

Table I. Computed characteristic parameters in cases 1-4 

Case v;ax C a x  v,,, tA. H T  E, 

1 1.390 4.530 0.775 5.010 0.836 3.418 
2 1.351 4.530 0859 4.980 0.876 2.828 
3 1.262 4.530 0.926 4.860 0.902 1,983 
4 1.600 4560 0.464 5.250 0.576 5.421 

Table 11. Variation of mL, mR and m with time in case 1 

t m mL mR 

0.0 
0 6  
1.2 
1.8 
2.4 
3-0 
3-6 
4.2 
48  
5.4 
6.0 
6 6  
7.2 
7-8 
8 4  
90  

1.6330 
1.6330 
1.6330 
1.6330 
1-6329 
1.6327 
1.6309 
1.6162 
1.5772 
1.5914 
1.621 1 
1.6269 
1.6283 
1.6278 
1-6282 
1-6279 

1.6330 
1.6330 
1.6329 
1.6325 
1.6305 
1 *6207 
1.5761 
1.3972 
0.9548 
0.47 12 
01758 
04430 

-0.0013 
- 0.0127 
-0.0147 
-00153 

0.OOOo 
0~0000 
0OOO1 
OQ005 
00025 
00120 
0.0548 
0.2190 
06224 
1.1201 
1.4453 
15839 
1.6296 
1-6405 
1-6429 
1-6432 
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Table 111. Effect of number of boundary elements on the computation 

1 1.390 4330 0,775 5.010 0836 3.418 
2 1.400 4-530 0.771 4-996 0.839 3.420 

* For result 1, n,, = nR = 30, n, = 60 and nb = 30; for result 2, nL = nR = 15, n, = 50 and nb = 16. 

From Table I one can see that for the cases shown in Figure 4 the change in h2 has a significant 
effect on the wave behaviour and the influence of the structure horizontal dimension is deter- 
minant. A decrease in h2 results in increases of t iax  and ?:.,. Since the area of C3 in case 1 is 
smaller than that in case 2, more time is needed for the same quantity of fluid to go through &. 
Therefore the interaction of the structure and the waves is relatively stronger. Consequently, 
tia, and via, increase and via, decreases. In case 4, for which the computation was performed 
using nL = nR = 20, n, = 100 and n b  = 80, the structure horizontal dimension is four times that of 
cases 1-3. As a result, the value of the amplitude of the transmitted solitary wave, 0.575, is 
comparable to the values of the crest and the trough of the reflected wave, 0.47 and 0-37 
respectively. In addition, in all the sample computations the values of E, are of the order of the 
approximation adopted, i.e. O(I$''~) = 0.06 (see Table I), which indicates that the numerical 
algorithm used here conserves the expected order of approximation. Table I1 shows that larger 
differences between rn and mo occur from t = 4.2 to t = 5.4 when the error introduced is due to the 
approximation for (27), and the total fluid mass recovers gradually to its initial mass mo, i.e. the 
present method describes correctly the conservation of mass for shallow water waves in the far 
field. 

Numerical experiments were also conducted with different numbers of boundary elements in 
order to determine how many boundary elements are required for an acceptable solution to be 
obtained. For case 1 a comparison of the results obtained using two different sets of boundary 
elements is given in Table 111. 

In all these sample computations it is found that 20 boundary elements are sufficient for the 
discretization of the boundaries 5 = CL and C = cR and that the number of elements over y = b(r) 
and y = 0 should be adapted to changes of the structure horizontal dimension. Also, if keeping the 
maximum boundary element length smaller than 0.06, then the maximum relative difference, 
i.e. the ratio of the difference between two quantities and either of the two quantities, of the 
characteristic parameters computed using different sets of boundary elements remains smaller 
than 0.02 (e.g. see Table 111). 

5. CONCLUSIONS 

A numerical method has been developed for computation of the non-linear shallow water waves 
diffracted by a structure of arbitrary bottom shape. The method involves application of the 
matched asymptotic expansion, the boundary element method and the finite difference approx- 
imation, and a time-stepping procedure is used to obtain the evolution of the waves. 
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